MathDB
Equally many L-tetrominos and ┐-tetrominos are monochromatic

Source: German TST 2022, exam 2, problem 2

March 11, 2022
combinatoricsEnumerative Combinatoricsfunction

Problem Statement

Given two positive integers nn and mm and a function f:Z×Z{0,1}f : \mathbb{Z} \times \mathbb{Z} \to \left\{0,1\right\} with the property that \begin{align*} f\left(i, j\right) = f\left(i+n, j\right) = f\left(i, j+m\right) \qquad \text{for all } \left(i, j\right) \in \mathbb{Z} \times \mathbb{Z} . \end{align*} Let [k]={1,2,,k}\left[k\right] = \left\{1,2,\ldots,k\right\} for each positive integer kk. Let aa be the number of all (i,j)[n]×[m]\left(i, j\right) \in \left[n\right] \times \left[m\right] satisfying \begin{align*} f\left(i, j\right) = f\left(i+1, j\right) = f\left(i, j+1\right) . \end{align*} Let bb be the number of all (i,j)[n]×[m]\left(i, j\right) \in \left[n\right] \times \left[m\right] satisfying \begin{align*} f\left(i, j\right) = f\left(i-1, j\right) = f\left(i, j-1\right) . \end{align*} Prove that a=ba = b.