Equally many L-tetrominos and ┐-tetrominos are monochromatic
Source: German TST 2022, exam 2, problem 2
March 11, 2022
combinatoricsEnumerative Combinatoricsfunction
Problem Statement
Given two positive integers and and a function with the property that
\begin{align*}
f\left(i, j\right) = f\left(i+n, j\right) = f\left(i, j+m\right) \qquad \text{for all } \left(i, j\right) \in \mathbb{Z} \times \mathbb{Z} .
\end{align*}
Let for each positive integer .
Let be the number of all satisfying
\begin{align*}
f\left(i, j\right) = f\left(i+1, j\right) = f\left(i, j+1\right) .
\end{align*}
Let be the number of all satisfying
\begin{align*}
f\left(i, j\right) = f\left(i-1, j\right) = f\left(i, j-1\right) .
\end{align*}
Prove that .