MathDB

2022 Germany Team Selection Test

Part of Germany Team Selection Test

Subcontests

(3)
3
1

Another perpendicular to the Euler line

Let ABCABC be a triangle with orthocenter HH and circumcenter OO. Let PP be a point in the plane such that APBCAP \perp BC. Let QQ and RR be the reflections of PP in the lines CACA and ABAB, respectively. Let YY be the orthogonal projection of RR onto CACA. Let ZZ be the orthogonal projection of QQ onto ABAB. Assume that HOH \neq O and YZY \neq Z. Prove that YZHOYZ \perp HO.
[asy] import olympiad; unitsize(30); pair A,B,C,H,O,P,Q,R,Y,Z,Q2,R2,P2; A = (-14.8, -6.6); B = (-10.9, 0.3); C = (-3.1, -7.1); O = circumcenter(A,B,C); H = orthocenter(A,B,C); P = 1.2 * H - 0.2 * A; Q = reflect(A, C) * P; R = reflect(A, B) * P; Y = foot(R, C, A); Z = foot(Q, A, B); P2 = foot(A, B, C); Q2 = foot(P, C, A); R2 = foot(P, A, B); draw(B--(1.6*A-0.6*B)); draw(B--C--A); draw(P--R, blue); draw(R--Y, red); draw(P--Q, blue); draw(Q--Z, red); draw(A--P2, blue); draw(O--H, darkgreen+linewidth(1.2)); draw((1.4*Z-0.4*Y)--(4.6*Y-3.6*Z), red+linewidth(1.2)); draw(rightanglemark(R,Y,A,10), red); draw(rightanglemark(Q,Z,B,10), red); draw(rightanglemark(C,Q2,P,10), blue); draw(rightanglemark(A,R2,P,10), blue); draw(rightanglemark(B,P2,H,10), blue); label("H\textcolor{blue}{H}",H,NW); label("P\textcolor{blue}{P}",P,N); label("AA",A,W); label("BB",B,N); label("CC",C,S); label("OO",O,S); label("Q\textcolor{blue}{Q}",Q,E); label("R\textcolor{blue}{R}",R,W); label("Y\textcolor{red}{Y}",Y,S); label("Z\textcolor{red}{Z}",Z,NW); dot(A, filltype=FillDraw(black)); dot(B, filltype=FillDraw(black)); dot(C, filltype=FillDraw(black)); dot(H, filltype=FillDraw(blue)); dot(P, filltype=FillDraw(blue)); dot(Q, filltype=FillDraw(blue)); dot(R, filltype=FillDraw(blue)); dot(Y, filltype=FillDraw(red)); dot(Z, filltype=FillDraw(red)); dot(O, filltype=FillDraw(black)); [/asy]
1
2