MathDB
Problems
Contests
National and Regional Contests
Romania Contests
Romania Team Selection Test
2024 Romania Team Selection Tests
P2
Bashy min/max algebra
Bashy min/max algebra
Source: Romania TST 2024 Day 1 P2
July 31, 2024
algebra
inequalities
Problem Statement
Let
n
⩾
2
n\geqslant 2
n
⩾
2
be a fixed integer. Consider
n
n
n
real numbers
a
1
,
a
2
,
…
,
a
n
a_1,a_2,\ldots,a_n
a
1
,
a
2
,
…
,
a
n
not all equal and let
d
:
=
max
1
⩽
i
<
j
⩽
n
∣
a
i
−
a
j
∣
;
s
=
∑
1
⩽
i
<
j
⩽
n
∣
a
i
−
a
j
∣
.
d:=\max_{1\leqslant i<j\leqslant n}|a_i-a_j|;\qquad s=\sum_{1\leqslant i<j\leqslant n}|a_i-a_j|.
d
:=
1
⩽
i
<
j
⩽
n
max
∣
a
i
−
a
j
∣
;
s
=
1
⩽
i
<
j
⩽
n
∑
∣
a
i
−
a
j
∣.
Determine in terms of
n
n{}
n
the smalest and largest values the quotient
s
/
d
s/d
s
/
d
may achieve.Selected from the Kvant Magazine
Back to Problems
View on AoPS