MathDB
Problems
Contests
National and Regional Contests
Romania Contests
Romania Team Selection Test
2024 Romania Team Selection Tests
P2
P2
Part of
2024 Romania Team Selection Tests
Problems
(1)
Bashy min/max algebra
Source: Romania TST 2024 Day 1 P2
7/31/2024
Let
n
⩾
2
n\geqslant 2
n
⩾
2
be a fixed integer. Consider
n
n
n
real numbers
a
1
,
a
2
,
…
,
a
n
a_1,a_2,\ldots,a_n
a
1
,
a
2
,
…
,
a
n
not all equal and let
d
:
=
max
1
⩽
i
<
j
⩽
n
∣
a
i
−
a
j
∣
;
s
=
∑
1
⩽
i
<
j
⩽
n
∣
a
i
−
a
j
∣
.
d:=\max_{1\leqslant i<j\leqslant n}|a_i-a_j|;\qquad s=\sum_{1\leqslant i<j\leqslant n}|a_i-a_j|.
d
:=
1
⩽
i
<
j
⩽
n
max
∣
a
i
−
a
j
∣
;
s
=
1
⩽
i
<
j
⩽
n
∑
∣
a
i
−
a
j
∣.
Determine in terms of
n
n{}
n
the smalest and largest values the quotient
s
/
d
s/d
s
/
d
may achieve.Selected from the Kvant Magazine
algebra
inequalities