MathDB
Problems
Contests
National and Regional Contests
Romania Contests
Romania - Local Contests
Bogdan Stan
2012 Bogdan Stan
2
Sets of multiples
Sets of multiples
Source:
November 25, 2019
GCD
LCM
Divisibility
number theory
Problem Statement
For any
a
∈
Z
≥
0
a\in\mathbb{Z}_{\ge 0}
a
∈
Z
≥
0
make the notation
a
Z
≥
0
=
{
a
n
∣
n
∈
Z
≥
0
}
.
a\mathbb{Z}_{\ge 0} =\{ an| n\in\mathbb{Z}_{\ge 0} \} .
a
Z
≥
0
=
{
an
∣
n
∈
Z
≥
0
}
.
Prove that the following relations are equivalent:
(1)
a
Z
≥
0
∖
b
Z
≥
0
⊂
c
Z
≥
0
∖
d
Z
≥
0
\text{(1)} a\mathbb{Z}_{\ge 0} \setminus b\mathbb{Z}_{\ge 0}\subset c\mathbb{Z}_{\ge 0} \setminus d\mathbb{Z}_{\ge 0}
(1)
a
Z
≥
0
∖
b
Z
≥
0
⊂
c
Z
≥
0
∖
d
Z
≥
0
(2)
b
∣
a
or
(
c
∣
a
and lcm
(
a
,
b
)
∣
lcm
(
a
,
d
)
)
\text{(2)} b|a\text{ or } (c|a\text{ and } \text{lcm} (a,b) |\text{lcm} (a,d))
(2)
b
∣
a
or
(
c
∣
a
and
lcm
(
a
,
b
)
∣
lcm
(
a
,
d
))
Marin Tolosi and Cosmin Nitu
Back to Problems
View on AoPS