MathDB

Problems(4)

Sets of multiples

Source:

11/25/2019
For any aZ0 a\in\mathbb{Z}_{\ge 0} make the notation aZ0={annZ0}. a\mathbb{Z}_{\ge 0} =\{ an| n\in\mathbb{Z}_{\ge 0} \} . Prove that the following relations are equivalent:
(1)aZ0bZ0cZ0dZ0 \text{(1)} a\mathbb{Z}_{\ge 0} \setminus b\mathbb{Z}_{\ge 0}\subset c\mathbb{Z}_{\ge 0} \setminus d\mathbb{Z}_{\ge 0} (2)ba or (ca and lcm(a,b)lcm(a,d)) \text{(2)} b|a\text{ or } (c|a\text{ and } \text{lcm} (a,b) |\text{lcm} (a,d))
Marin Tolosi and Cosmin Nitu
GCDLCMDivisibilitynumber theory
General complex inequality

Source: G.M.

11/25/2019
Prove the complex inequality x+y+zx+y+z+xz+zy+yz. |x|+|y|+|z|\le |x+y+z| +|x-z| +|z-y|+|y-z|.
inequalitiesalgebracomplex numbers
Convergence of a not consecutive recurrence

Source:

11/25/2019
Let be a bounded sequence of positive real numbers (xn)n1 \left( x_n \right)_{n\ge 1} satisfying the recurrence: xn+3=3xn23. x_{n+3} =\sqrt[3]{3x_n-2} . Prove that (xn)n1 \left( x_n \right)_{n\ge 1} is convergent.
Cristinel Mortici
real analyssiSequences
Integral functional relation

Source:

11/25/2019
Find the continuous functions f:[0,13](0,) f:\left[ 0,\frac{1}{3} \right] \longrightarrow (0,\infty ) that satisfy the functional relation 5401/3f(x)dx+3201/3dxx+f(x)=21. 54\int_0^{1/3} f(x)dx +32\int_0^{1/3} \frac{dx}{\sqrt{x+f(x)}} =21.
Cristinel Mortici
functionFind all functionscalculusintegration