MathDB
Recursive problem

Source: András Imolay, Budapest

March 10, 2021
Sequencenumber theory

Problem Statement

Let k>1k > 1 be a fixed odd number, and for non-negative integers nn let
fn=0inkn2i(ni).f_n=\sum_{\substack{0\leq i\leq n\\ k\mid n-2i}}\binom{n}{i}. Prove that fnf_n satisfy the following recursion: fn2=i=0n(ni)fifni.f_{n}^2=\sum_{i=0}^{n} \binom{n}{i}f_{i}f_{n-i}.