MathDB
Problems
Contests
International Contests
KoMaL A Problems
KoMaL A Problems 2019/2020
A. 776
A. 776
Part of
KoMaL A Problems 2019/2020
Problems
(1)
Recursive problem
Source: András Imolay, Budapest
3/10/2021
Let
k
>
1
k > 1
k
>
1
be a fixed odd number, and for non-negative integers
n
n
n
let
f
n
=
∑
0
≤
i
≤
n
k
∣
n
−
2
i
(
n
i
)
.
f_n=\sum_{\substack{0\leq i\leq n\\ k\mid n-2i}}\binom{n}{i}.
f
n
=
0
≤
i
≤
n
k
∣
n
−
2
i
∑
(
i
n
)
.
Prove that
f
n
f_n
f
n
satisfy the following recursion:
f
n
2
=
∑
i
=
0
n
(
n
i
)
f
i
f
n
−
i
.
f_{n}^2=\sum_{i=0}^{n} \binom{n}{i}f_{i}f_{n-i}.
f
n
2
=
i
=
0
∑
n
(
i
n
)
f
i
f
n
−
i
.
Sequence
number theory