MathDB
Cyclic Quad AIME

Source: 2018 AMC 12A #20

February 8, 2018
geometrycyclic quadrilateralAMCAMC 12AMC 12 AAIME

Problem Statement

Triangle ABCABC is an isosceles right triangle with AB=AC=3AB=AC=3. Let MM be the midpoint of hypotenuse BC\overline{BC}. Points II and EE lie on sides AC\overline{AC} and AB\overline{AB}, respectively, so that AI>AEAI>AE and AIMEAIME is a cyclic quadrilateral. Given that triangle EMIEMI has area 22, the length CICI can be written as abc\frac{a-\sqrt{b}}{c}, where aa, bb, and cc are positive integers and bb is not divisible by the square of any prime. What is the value of a+b+ca+b+c?
<spanclass=latexbold>(A)</span>9<spanclass=latexbold>(B)</span>10<spanclass=latexbold>(C)</span>11<spanclass=latexbold>(D)</span>12<spanclass=latexbold>(E)</span>13 <span class='latex-bold'>(A) </span>9 \qquad <span class='latex-bold'>(B) </span>10 \qquad <span class='latex-bold'>(C) </span>11 \qquad <span class='latex-bold'>(D) </span>12 \qquad <span class='latex-bold'>(E) </span>13 \qquad