MathDB

Problems(2)

Cyclic Quad AIME

Source: 2018 AMC 12A #20

2/8/2018
Triangle ABCABC is an isosceles right triangle with AB=AC=3AB=AC=3. Let MM be the midpoint of hypotenuse BC\overline{BC}. Points II and EE lie on sides AC\overline{AC} and AB\overline{AB}, respectively, so that AI>AEAI>AE and AIMEAIME is a cyclic quadrilateral. Given that triangle EMIEMI has area 22, the length CICI can be written as abc\frac{a-\sqrt{b}}{c}, where aa, bb, and cc are positive integers and bb is not divisible by the square of any prime. What is the value of a+b+ca+b+c?
<spanclass=latexbold>(A)</span>9<spanclass=latexbold>(B)</span>10<spanclass=latexbold>(C)</span>11<spanclass=latexbold>(D)</span>12<spanclass=latexbold>(E)</span>13 <span class='latex-bold'>(A) </span>9 \qquad <span class='latex-bold'>(B) </span>10 \qquad <span class='latex-bold'>(C) </span>11 \qquad <span class='latex-bold'>(D) </span>12 \qquad <span class='latex-bold'>(E) </span>13 \qquad
geometrycyclic quadrilateralAMCAMC 12AMC 12 AAIME
Triangle Madness

Source: 2018 AMC 12B #20

2/16/2018
Let ABCDEFABCDEF be a regular hexagon with side length 11. Denote by XX, YY, and ZZ the midpoints of sides AB,CD,EF\overline{AB},\overline{CD},\overline{EF}, respectively. What is the area of the convex hexagon whose interior is the intersection of the interiors of ACE\triangle{ACE} and XYZ\triangle{XYZ}?
<spanclass=latexbold>(A)</span>383<spanclass=latexbold>(B)</span>7163<spanclass=latexbold>(C)</span>15323<spanclass=latexbold>(D)</span>123<spanclass=latexbold>(E)</span>9163<span class='latex-bold'>(A) </span>\dfrac{3}{8}\sqrt{3}\qquad<span class='latex-bold'>(B) </span>\dfrac{7}{16}\sqrt{3}\qquad<span class='latex-bold'>(C) </span>\dfrac{15}{32}\sqrt{3}\qquad<span class='latex-bold'>(D) </span>\dfrac{1}{2}\sqrt{3}\qquad<span class='latex-bold'>(E) </span>\dfrac{9}{16}\sqrt{3}
AMC 12AMCAMC 12 B2018 AMC 12B2018 AMC