Pascal's Triangle
Source:
February 12, 2006
ratiofactorialPascal's Trianglebinomial coefficients
Problem Statement
In Pascal's Triangle, each entry is the sum of the two entries above it. The first few rows of the triangle are shown below.\begin{array}{c@{\hspace{8em}}
c@{\hspace{6pt}}c@{\hspace{6pt}}c@{\hspace{6pt}}c@{\hspace{4pt}}c@{\hspace{2pt}}
c@{\hspace{2pt}}c@{\hspace{2pt}}c@{\hspace{2pt}}c@{\hspace{3pt}}c@{\hspace{6pt}}
c@{\hspace{6pt}}c@{\hspace{6pt}}c} \vspace{4pt}
\text{Row 0: } & & & & & & & 1 & & & & & & \\\vspace{4pt}
\text{Row 1: } & & & & & & 1 & & 1 & & & & & \\\vspace{4pt}
\text{Row 2: } & & & & & 1 & & 2 & & 1 & & & & \\\vspace{4pt}
\text{Row 3: } & & & & 1 & & 3 & & 3 & & 1 & & & \\\vspace{4pt}
\text{Row 4: } & & & 1 & & 4 & & 6 & & 4 & & 1 & & \\\vspace{4pt}
\text{Row 5: } & & 1 & & 5 & &10& &10 & & 5 & & 1 & \\\vspace{4pt}
\text{Row 6: } & 1 & & 6 & &15& &20& &15 & & 6 & & 1
\end{array}In which row of Pascal's Triangle do three consecutive entries occur that are in the ratio ?