In Pascal's Triangle, each entry is the sum of the two entries above it. The first few rows of the triangle are shown below.\begin{array}{c@{\hspace{8em}}
c@{\hspace{6pt}}c@{\hspace{6pt}}c@{\hspace{6pt}}c@{\hspace{4pt}}c@{\hspace{2pt}}
c@{\hspace{2pt}}c@{\hspace{2pt}}c@{\hspace{2pt}}c@{\hspace{3pt}}c@{\hspace{6pt}}
c@{\hspace{6pt}}c@{\hspace{6pt}}c} \vspace{4pt}
\text{Row 0: } & & & & & & & 1 & & & & & & \\\vspace{4pt}
\text{Row 1: } & & & & & & 1 & & 1 & & & & & \\\vspace{4pt}
\text{Row 2: } & & & & & 1 & & 2 & & 1 & & & & \\\vspace{4pt}
\text{Row 3: } & & & & 1 & & 3 & & 3 & & 1 & & & \\\vspace{4pt}
\text{Row 4: } & & & 1 & & 4 & & 6 & & 4 & & 1 & & \\\vspace{4pt}
\text{Row 5: } & & 1 & & 5 & &10& &10 & & 5 & & 1 & \\\vspace{4pt}
\text{Row 6: } & 1 & & 6 & &15& &20& &15 & & 6 & & 1
\end{array}In which row of Pascal's Triangle do three consecutive entries occur that are in the ratio 3:4:5? ratiofactorialPascal's Trianglebinomial coefficients