MathDB
Cubic polynomial with absolute value inequality

Source: IMO Shortlist 1996, A5

August 9, 2008
algebrapolynomialinequalitiesfunctionmaximizationIMO Shortlist

Problem Statement

Let P(x) P(x) be the real polynomial function, P(x) \equal{} ax^3 \plus{} bx^2 \plus{} cx \plus{} d. Prove that if P(x)1 |P(x)| \leq 1 for all x x such that x1, |x| \leq 1, then |a| \plus{} |b| \plus{} |c| \plus{} |d| \leq 7.