5
Part of 1996 IMO Shortlist
Problems(2)
Cubic polynomial with absolute value inequality
Source: IMO Shortlist 1996, A5
8/9/2008
Let be the real polynomial function, P(x) \equal{} ax^3 \plus{} bx^2 \plus{} cx \plus{} d. Prove that if for all such that then
|a| \plus{} |b| \plus{} |c| \plus{} |d| \leq 7.
algebrapolynomialinequalitiesfunctionmaximizationIMO Shortlist
f(3mn + m + n) = 4f(m)f(n) + f(m) + f(n)
Source: IMO Shortlist 1996, N5
8/9/2008
Show that there exists a bijective function such that for all :
f(3mn \plus{} m \plus{} n) \equal{} 4f(m)f(n) \plus{} f(m) \plus{} f(n).
functionnumber theoryFunctional EquationsIMO Shortlist