MathDB
Liouville function on two certain primes

Source: 2021 CIIM, P5

November 2, 2021
number theoryprime factorizationfunction

Problem Statement

For every positive integer nn, let s(n)s(n) be the sum of the exponents of 7171 and 9797 in the prime factorization of nn; for example, s(2021)=s(4347)=0s(2021) = s(43 \cdot 47) = 0 and s(488977)=s(71297)=3s(488977) = s(71^2 \cdot 97) = 3. If we define f(n)=(1)s(n)f(n)=(-1)^{s(n)}, prove that the limit limn+f(1)+f(2)++f(n)n \lim_{n \to +\infty} \frac{f(1) + f(2) + \cdots+ f(n)}{n} exists and determine its value.