For every positive integer n, let s(n) be the sum of the exponents of 71 and 97 in the prime factorization of n; for example, s(2021)=s(43⋅47)=0 and s(488977)=s(712⋅97)=3. If we define f(n)=(−1)s(n), prove that the limit
n→+∞limnf(1)+f(2)+⋯+f(n)
exists and determine its value. number theoryprime factorizationfunction