Let {ak} be a sequence of integers such that a_1 \equal{} 1 and a_{m \plus{} n} \equal{} a_m \plus{} a_n \plus{} mn, for all positive integers m and n. Then a12 is
<spanclass=′latex−bold′>(A)</span>45<spanclass=′latex−bold′>(B)</span>56<spanclass=′latex−bold′>(C)</span>67<spanclass=′latex−bold′>(D)</span>78<spanclass=′latex−bold′>(E)</span>89