Problems(3)
Points A,B,C and D lie on a line, in that order, with AB\equal{}CD and BC\equal{}12. Point E is not on the line, and BE\equal{}CE\equal{}10. The perimeter of △AED is twice the perimeter of △BEC. Find AB.
(A) 15/2(B) 8(C) 17/2(D) 9(E) 19/2 geometryperimeterAMC
Let {ak} be a sequence of integers such that a_1 \equal{} 1 and a_{m \plus{} n} \equal{} a_m \plus{} a_n \plus{} mn, for all positive integers m and n. Then a12 is
<spanclass=′latex−bold′>(A)</span> 45<spanclass=′latex−bold′>(B)</span> 56<spanclass=′latex−bold′>(C)</span> 67<spanclass=′latex−bold′>(D)</span> 78<spanclass=′latex−bold′>(E)</span> 89 functioninduction
Let a=112+322+532+⋯+200110012 and b=312+522+732+⋯+200310012. Find the integer closest to a−b.<spanclass=′latex−bold′>(A)</span>500<spanclass=′latex−bold′>(B)</span>501<spanclass=′latex−bold′>(C)</span>999<spanclass=′latex−bold′>(D)</span>1000<spanclass=′latex−bold′>(E)</span>1001