MathDB
Equilateral triangle and circles

Source: 2019 AMC 12A #22

February 8, 2019
AMCAMC 12AMC 12 A2019 AMC 12A2019 AMCgeometry

Problem Statement

Circles ω\omega and γ\gamma, both centered at OO, have radii 2020 and 1717, respectively. Equilateral triangle ABCABC, whose interior lies in the interior of ω\omega but in the exterior of γ\gamma, has vertex AA on ω\omega, and the line containing side BC\overline{BC} is tangent to γ\gamma. Segments AO\overline{AO} and BC\overline{BC} intersect at PP, and BPCP=3\dfrac{BP}{CP} = 3. Then ABAB can be written in the form mnpq\dfrac{m}{\sqrt{n}} - \dfrac{p}{\sqrt{q}} for positive integers mm, nn, pp, qq with gcd(m,n)=gcd(p,q)=1\gcd(m,n) = \gcd(p,q) = 1. What is m+n+p+qm+n+p+q? \phantom{}
<spanclass=latexbold>(A)</span>42<spanclass=latexbold>(B)</span>86<spanclass=latexbold>(C)</span>92<spanclass=latexbold>(D)</span>114<spanclass=latexbold>(E)</span>130<span class='latex-bold'>(A) </span> 42 \qquad <span class='latex-bold'>(B) </span>86 \qquad <span class='latex-bold'>(C) </span> 92 \qquad <span class='latex-bold'>(D) </span> 114 \qquad <span class='latex-bold'>(E) </span> 130