MathDB
IMO LongList 1967, Mongolia 6

Source: IMO LongList 1967, Mongolia 6

December 16, 2004
trigonometryalgebraseries summationTrigonometric IdentitiesIMO ShortlistIMO Longlist

Problem Statement

Prove the identity k=0n(nk)(tanx2)2k(1+2k(1tan2x2)k)=sec2nx2+secnx\sum\limits_{k=0}^n\binom{n}{k}\left(\tan\frac{x}{2}\right)^{2k}\left(1+\frac{2^k}{\left(1-\tan^2\frac{x}{2}\right)^k}\right)=\sec^{2n}\frac{x}{2}+\sec^n x for any natural number nn and any angle x.x.