MathDB
Positive sequence

Source: USAMO 1994

October 23, 2005
functioninequalities unsolvedinequalities

Problem Statement

Let a1,a2,a3,\, a_1, a_2, a_3, \ldots \, be a sequence of positive real numbers satisfying j=1najn\, \sum_{j=1}^n a_j \geq \sqrt{n} \, for all n1\, n \geq 1. Prove that, for all n1,\, n \geq 1, \, j=1naj2>14(1+12++1n). \sum_{j=1}^n a_j^2 > \frac{1}{4} \left( 1 + \frac{1}{2} + \cdots + \frac{1}{n} \right).