MathDB
Problems
Contests
National and Regional Contests
USA Contests
MAA AMC
USAMO
1994 USAMO
4
4
Part of
1994 USAMO
Problems
(1)
Positive sequence
Source: USAMO 1994
10/23/2005
Let
a
1
,
a
2
,
a
3
,
…
\, a_1, a_2, a_3, \ldots \,
a
1
,
a
2
,
a
3
,
…
be a sequence of positive real numbers satisfying
∑
j
=
1
n
a
j
≥
n
\, \sum_{j=1}^n a_j \geq \sqrt{n} \,
∑
j
=
1
n
a
j
≥
n
for all
n
≥
1
\, n \geq 1
n
≥
1
. Prove that, for all
n
≥
1
,
\, n \geq 1, \,
n
≥
1
,
∑
j
=
1
n
a
j
2
>
1
4
(
1
+
1
2
+
⋯
+
1
n
)
.
\sum_{j=1}^n a_j^2 > \frac{1}{4} \left( 1 + \frac{1}{2} + \cdots + \frac{1}{n} \right).
j
=
1
∑
n
a
j
2
>
4
1
(
1
+
2
1
+
⋯
+
n
1
)
.
function
inequalities unsolved
inequalities