MathDB
Simple inequality

Source: MEMO 2018 T1

September 2, 2018
inequalitiesam-gm inequalityeasy problem

Problem Statement

Let a,ba,b and cc be positive real numbers satisfying abc=1.abc=1. Prove thata2b2a+bc+b2c2b+ca+c2a2c+aba+b+c3.\frac{a^2-b^2}{a+bc}+\frac{b^2-c^2}{b+ca}+\frac{c^2-a^2}{c+ab}\leq a+b+c-3.