MathDB
K 19

Source:

May 25, 2007
functionFunctional Equations

Problem Statement

Find all functions f:Q+Q+f: \mathbb{Q}^{+}\to \mathbb{Q}^{+} such that for all x,yQx,y \in \mathbb{Q}: f(x+yx)=f(x)+f(y)f(x)+2y,  x,yQ+.f \left( x+\frac{y}{x}\right) =f(x)+\frac{f(y)}{f(x)}+2y, \; x,y \in \mathbb{Q}^{+}.