Subcontests
(33)K 32
Find all functions f:Z2→R+ such that for all i,j∈Z: f(i,j)=4f(i+1,j)+f(i,j+1)+f(i−1,j)+f(i,j−1). K 26
The function f:N→N0 satisfies for all m,n∈N: f(m+n)−f(m)−f(n)=0 or 1,f(2)=0,f(3)>0, and f(9999)=3333. Determine f(1982). K 24
A function f is defined on the positive integers by ⎩⎨⎧f(1)f(3)f(2n)f(4n+1)f(4n+3)=====1,3,f(n),2f(2n+1)−f(n),3f(2n+1)−2f(n), for all positive integers n. Determine the number of positive integers n, less than or equal to 1988, for which f(n)=n.