MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2011 Today's Calculation Of Integral
737
Today's calculation of Integral 737
Today's calculation of Integral 737
Source: created by kunny
July 3, 2011
calculus
integration
logarithms
geometry
inequalities
calculus computations
Problem Statement
Let
a
,
b
a,\ b
a
,
b
real numbers such that
a
>
1
,
b
>
1.
a>1,\ b>1.
a
>
1
,
b
>
1.
Prove the following inequality.
∫
−
1
1
(
1
+
b
∣
x
∣
1
+
a
x
+
1
+
a
∣
x
∣
1
+
b
x
)
d
x
<
a
+
b
+
2
\int_{-1}^1 \left(\frac{1+b^{|x|}}{1+a^{x}}+\frac{1+a^{|x|}}{1+b^{x}}\right)\ dx<a+b+2
∫
−
1
1
(
1
+
a
x
1
+
b
∣
x
∣
+
1
+
b
x
1
+
a
∣
x
∣
)
d
x
<
a
+
b
+
2
Back to Problems
View on AoPS