MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2011 Today's Calculation Of Integral
737
737
Part of
2011 Today's Calculation Of Integral
Problems
(1)
Today's calculation of Integral 737
Source: created by kunny
7/3/2011
Let
a
,
b
a,\ b
a
,
b
real numbers such that
a
>
1
,
b
>
1.
a>1,\ b>1.
a
>
1
,
b
>
1.
Prove the following inequality.
∫
−
1
1
(
1
+
b
∣
x
∣
1
+
a
x
+
1
+
a
∣
x
∣
1
+
b
x
)
d
x
<
a
+
b
+
2
\int_{-1}^1 \left(\frac{1+b^{|x|}}{1+a^{x}}+\frac{1+a^{|x|}}{1+b^{x}}\right)\ dx<a+b+2
∫
−
1
1
(
1
+
a
x
1
+
b
∣
x
∣
+
1
+
b
x
1
+
a
∣
x
∣
)
d
x
<
a
+
b
+
2
calculus
integration
logarithms
geometry
inequalities
calculus computations