MathDB
Problems
Contests
National and Regional Contests
Romania Contests
Romania National Olympiad
1998 Romania National Olympiad
4
Very beautiful and easy
Very beautiful and easy
Source: Romanian mo 1998
December 10, 2005
algebra proposed
algebra
Problem Statement
Suppse that
n
≥
2
n\geq 2
n
≥
2
and
0
<
x
1
<
x
2
<
.
.
.
<
x
n
0<x_1<x_2<...<x_n
0
<
x
1
<
x
2
<
...
<
x
n
are integer numbers. We denote that :
S
k
=
∑
A
⊂
{
x
1
,
x
2
,
.
.
.
,
x
n
}
1
∏
a
∈
A
a
,
k
=
1
,
2
,
.
.
.
,
n
.
S_k=\sum_{A\subset \{x_1,x_2,...,x_n\}} \frac{1}{\prod_{a\in A}a} , k=1,2,...,n.
S
k
=
A
⊂
{
x
1
,
x
2
,
...
,
x
n
}
∑
∏
a
∈
A
a
1
,
k
=
1
,
2
,
...
,
n
.
(where
A
A
A
is a non-empty subset). Show that if
S
n
,
S
n
−
1
S_n ,S_{n-1}
S
n
,
S
n
−
1
were positive integer numbers , then
∀
k
:
S
k
\forall k : S_k
∀
k
:
S
k
is a positive integer.
Back to Problems
View on AoPS