MathDB
2014 HMIC #3

Source:

December 26, 2016

Problem Statement

Fix positive integers mm and nn. Suppose that a1,a2,,ama_1, a_2, \dots, a_m are reals, and that pairwise distinct vectors v1,,vmRnv_1, \dots, v_m\in \mathbb{R}^n satisfy jiajvjvivjvi3=0\sum_{j\neq i} a_j \frac{v_j-v_i}{||v_j-v_i||^3}=0 for i=1,2,,mi=1,2,\dots,m. Prove that 1i<jmaiajvjvi=0.\sum_{1\le i<j\le m} \frac{a_ia_j}{||v_j-v_i||}=0.