MathDB
Problems
Contests
National and Regional Contests
USA Contests
USA - College-Hosted Events
Harvard-MIT Mathematics Tournament
2014 HMIC
3
3
Part of
2014 HMIC
Problems
(1)
2014 HMIC #3
Source:
12/26/2016
Fix positive integers
m
m
m
and
n
n
n
. Suppose that
a
1
,
a
2
,
…
,
a
m
a_1, a_2, \dots, a_m
a
1
,
a
2
,
…
,
a
m
are reals, and that pairwise distinct vectors
v
1
,
…
,
v
m
∈
R
n
v_1, \dots, v_m\in \mathbb{R}^n
v
1
,
…
,
v
m
∈
R
n
satisfy
∑
j
≠
i
a
j
v
j
−
v
i
∣
∣
v
j
−
v
i
∣
∣
3
=
0
\sum_{j\neq i} a_j \frac{v_j-v_i}{||v_j-v_i||^3}=0
j
=
i
∑
a
j
∣∣
v
j
−
v
i
∣
∣
3
v
j
−
v
i
=
0
for
i
=
1
,
2
,
…
,
m
i=1,2,\dots,m
i
=
1
,
2
,
…
,
m
. Prove that
∑
1
≤
i
<
j
≤
m
a
i
a
j
∣
∣
v
j
−
v
i
∣
∣
=
0.
\sum_{1\le i<j\le m} \frac{a_ia_j}{||v_j-v_i||}=0.
1
≤
i
<
j
≤
m
∑
∣∣
v
j
−
v
i
∣∣
a
i
a
j
=
0.