MathDB
Maximising a sequence-given value

Source: IMO Shortlist 2018 A4

July 17, 2019
algebraSequencesIMO Shortlistmaximum valueIMO shortlist 2018

Problem Statement

Let a0,a1,a2,a_0,a_1,a_2,\dots be a sequence of real numbers such that a0=0,a1=1,a_0=0, a_1=1, and for every n2n\geq 2 there exists 1kn1 \leq k \leq n satisfying an=an1++ankk. a_n=\frac{a_{n-1}+\dots + a_{n-k}}{k}. Find the maximum possible value of a2018a2017a_{2018}-a_{2017}.