MathDB
Problems
Contests
International Contests
IMO Shortlist
2018 IMO Shortlist
A4
A4
Part of
2018 IMO Shortlist
Problems
(1)
Maximising a sequence-given value
Source: IMO Shortlist 2018 A4
7/17/2019
Let
a
0
,
a
1
,
a
2
,
…
a_0,a_1,a_2,\dots
a
0
,
a
1
,
a
2
,
…
be a sequence of real numbers such that
a
0
=
0
,
a
1
=
1
,
a_0=0, a_1=1,
a
0
=
0
,
a
1
=
1
,
and for every
n
≥
2
n\geq 2
n
≥
2
there exists
1
≤
k
≤
n
1 \leq k \leq n
1
≤
k
≤
n
satisfying
a
n
=
a
n
−
1
+
⋯
+
a
n
−
k
k
.
a_n=\frac{a_{n-1}+\dots + a_{n-k}}{k}.
a
n
=
k
a
n
−
1
+
⋯
+
a
n
−
k
.
Find the maximum possible value of
a
2018
−
a
2017
a_{2018}-a_{2017}
a
2018
−
a
2017
.
algebra
Sequences
IMO Shortlist
maximum value
IMO shortlist 2018