MathDB
Binary Operations and Logarithms

Source: 2019 AMC 12A #23

February 8, 2019
AMCAMC 12AMC 12 Alogarithms2019 AMC 12A2019 AMC

Problem Statement

Define binary operations \diamondsuit and \heartsuit by ab=alog7(b)andab=a1log7(b)a \, \diamondsuit \, b = a^{\log_{7}(b)} \qquad \text{and} \qquad a \, \heartsuit \, b = a^{\frac{1}{\log_{7}(b)}} for all real numbers aa and bb for which these expressions are defined. The sequence (an)(a_n) is defined recursively by a3=32a_3 = 3\, \heartsuit\, 2 and an=(n(n1))an1a_n = (n\, \heartsuit\, (n-1)) \,\diamondsuit\, a_{n-1} for all integers n4n \geq 4. To the nearest integer, what is log7(a2019)\log_{7}(a_{2019})?
<spanclass=latexbold>(A)</span>8<spanclass=latexbold>(B)</span>9<spanclass=latexbold>(C)</span>10<spanclass=latexbold>(D)</span>11<spanclass=latexbold>(E)</span>12<span class='latex-bold'>(A) </span> 8 \qquad <span class='latex-bold'>(B) </span> 9 \qquad <span class='latex-bold'>(C) </span> 10 \qquad <span class='latex-bold'>(D) </span> 11 \qquad <span class='latex-bold'>(E) </span> 12