Area of Quadrilateral in Triangle
Source:
January 5, 2007
geometrytrigonometrytrapezoidAMCAIMEangle bisector
Problem Statement
In the diagram below, angle is a right angle. Point is on , and bisects angle . Points and are on and , respectively, so that and Given that and , find the integer closest to the area of quadrilateral [asy]
size(250);
pair A=(0,12), E=(0,8), B=origin, C=(24*sqrt(2),0), D=(6*sqrt(2),0), F=A+10*dir(A--C), G=intersectionpoint(E--F, A--D);
draw(A--B--C--A--D^^E--F);
pair point=G+1*dir(250);
label("", A, dir(point--A));
label("", B, dir(point--B));
label("", C, dir(point--C));
label("", D, dir(point--D));
label("", E, dir(point--E));
label("", F, dir(point--F));
label("", G, dir(point--G));
markscalefactor=0.1;
draw(rightanglemark(A,B,C));
label("10", A--F, dir(90)*dir(A--F));
label("27", F--C, dir(90)*dir(F--C));
label("3", (0,10), W);
label("9", (0,4), W);[/asy]