10
Part of 2002 AIME Problems
Problems(2)
Area of Quadrilateral in Triangle
Source:
1/5/2007
In the diagram below, angle is a right angle. Point is on , and bisects angle . Points and are on and , respectively, so that and Given that and , find the integer closest to the area of quadrilateral [asy]
size(250);
pair A=(0,12), E=(0,8), B=origin, C=(24*sqrt(2),0), D=(6*sqrt(2),0), F=A+10*dir(A--C), G=intersectionpoint(E--F, A--D);
draw(A--B--C--A--D^^E--F);
pair point=G+1*dir(250);
label("", A, dir(point--A));
label("", B, dir(point--B));
label("", C, dir(point--C));
label("", D, dir(point--D));
label("", E, dir(point--E));
label("", F, dir(point--F));
label("", G, dir(point--G));
markscalefactor=0.1;
draw(rightanglemark(A,B,C));
label("10", A--F, dir(90)*dir(A--F));
label("27", F--C, dir(90)*dir(F--C));
label("3", (0,10), W);
label("9", (0,4), W);[/asy]
geometrytrigonometrytrapezoidAMCAIMEangle bisector
Absent-Minded Professor
Source:
12/28/2006
While finding the sine of a certain angle, an absent-minded professor failed to notice that his calculator was not in the correct angular mode. He was lucky to get the right answer. The two least positive real values of for which the sine of degrees is the same as the sine of radians are and where and are positive integers. Find
trigonometryAMCAIMEcalculus