MathDB
Clockblocked

Source: 2015 AMC 10A #14

February 4, 2015
AMCAMC 10rotationgeometryclockblock

Problem Statement

The diagram below shows the circular face of a clock with radius 2020 cm and a circular disk with radius 1010 cm externally tangent to the clock face at 1212 o'clock. The disk has an arrow painted on it, initially pointing in the upward vertical direction. Let the disk roll clockwise around the clock face. At what point on the clock face will the disk be tangent when the arrow is next pointing in the upward vertical direction?
[asy] size(170); defaultpen(linewidth(0.9)+fontsize(13pt)); draw(unitcircle^^circle((0,1.5),0.5)); path arrow = origin--(-0.13,-0.35)--(-0.06,-0.35)--(-0.06,-0.7)--(0.06,-0.7)--(0.06,-0.35)--(0.13,-0.35)--cycle; for(int i=1;i<=12;i=i+1) { draw(0.9*dir(90-30*i)--dir(90-30*i)); label(""+(string)i+""+(string) i+"",0.78*dir(90-30*i)); } dot(origin); draw(shift((0,1.87))*arrow); draw(arc(origin,1.5,68,30),EndArrow(size=12));[/asy]
<spanclass=latexbold>(A)</span>2 o’clock<spanclass=latexbold>(B)</span>3 o’clock<spanclass=latexbold>(C)</span>4 o’clock<spanclass=latexbold>(D)</span>6 o’clock<spanclass=latexbold>(E)</span>8 o’clock <span class='latex-bold'>(A) </span>\text{2 o'clock} \qquad<span class='latex-bold'>(B) </span>\text{3 o'clock} \qquad<span class='latex-bold'>(C) </span>\text{4 o'clock} \qquad<span class='latex-bold'>(D) </span>\text{6 o'clock} \qquad<span class='latex-bold'>(E) </span>\text{8 o'clock}