MathDB

2015 AMC 10

Part of AMC 10

Subcontests

(25)
7
2
4
2
3
2
2
2
1
2
5
2
6
2
8
2
9
2

Relation Between Two Right Cylinders

Two right circular cylinders have the same volume. The radius of the second cylinder is 10%10\% more than the radius of the first. What is the relationship between the heights of the two cylinders?
<spanclass=latexbold>(A)</span>The second height is 10% less than the first.<span class='latex-bold'>(A) </span>\text{The second height is 10\% less than the first.}
<spanclass=latexbold>(B)</span>The first height is 10% more than the second.<span class='latex-bold'>(B) </span>\text{The first height is 10\% more than the second.}
<spanclass=latexbold>(C)</span>The second height is 21% less than the first.<span class='latex-bold'>(C) </span>\text{The second height is 21\% less than the first.}
<spanclass=latexbold>(D)</span>The first height is 21% more than the second.<span class='latex-bold'>(D) </span>\text{The first height is 21\% more than the second.}
<spanclass=latexbold>(E)</span>The second height is 80% of the first.<span class='latex-bold'>(E) </span>\text{The second height is 80\% of the first.}

Clockblocked

The diagram below shows the circular face of a clock with radius 2020 cm and a circular disk with radius 1010 cm externally tangent to the clock face at 1212 o'clock. The disk has an arrow painted on it, initially pointing in the upward vertical direction. Let the disk roll clockwise around the clock face. At what point on the clock face will the disk be tangent when the arrow is next pointing in the upward vertical direction?
[asy] size(170); defaultpen(linewidth(0.9)+fontsize(13pt)); draw(unitcircle^^circle((0,1.5),0.5)); path arrow = origin--(-0.13,-0.35)--(-0.06,-0.35)--(-0.06,-0.7)--(0.06,-0.7)--(0.06,-0.35)--(0.13,-0.35)--cycle; for(int i=1;i<=12;i=i+1) { draw(0.9*dir(90-30*i)--dir(90-30*i)); label(""+(string)i+""+(string) i+"",0.78*dir(90-30*i)); } dot(origin); draw(shift((0,1.87))*arrow); draw(arc(origin,1.5,68,30),EndArrow(size=12));[/asy]
<spanclass=latexbold>(A)</span>2 o’clock<spanclass=latexbold>(B)</span>3 o’clock<spanclass=latexbold>(C)</span>4 o’clock<spanclass=latexbold>(D)</span>6 o’clock<spanclass=latexbold>(E)</span>8 o’clock <span class='latex-bold'>(A) </span>\text{2 o'clock} \qquad<span class='latex-bold'>(B) </span>\text{3 o'clock} \qquad<span class='latex-bold'>(C) </span>\text{4 o'clock} \qquad<span class='latex-bold'>(D) </span>\text{6 o'clock} \qquad<span class='latex-bold'>(E) </span>\text{8 o'clock}

Aaron the ant

Aaron the ant walks on the coordinate plane according to the following rules. He starts at the origin p0=(0,0)p_0=(0,0) facing to the east and walks one unit, arriving at p1=(1,0)p_1=(1,0). For n=1,2,3,n=1,2,3,\dots, right after arriving at the point pnp_n, if Aaron can turn 9090^\circ left and walk one unit to an unvisited point pn+1p_{n+1}, he does that. Otherwise, he walks one unit straight ahead to reach pn+1p_{n+1}. Thus the sequence of points continues p2=(1,1),p3=(0,1),p4=(1,1),p5=(1,0)p_2=(1,1), p_3=(0,1), p_4=(-1,1), p_5=(-1,0), and so on in a counterclockwise spiral pattern. What is p2015p_{2015}?
<spanclass=latexbold>(A)</span>(22,13)<spanclass=latexbold>(B)</span>(13,22)<spanclass=latexbold>(C)</span>(13,22)<spanclass=latexbold>(D)</span>(13,22)<spanclass=latexbold>(E)</span>(22,13) <span class='latex-bold'>(A) </span> (-22,-13)\qquad<span class='latex-bold'>(B) </span> (-13,-22)\qquad<span class='latex-bold'>(C) </span> (-13,22)\qquad<span class='latex-bold'>(D) </span> (13,-22)\qquad<span class='latex-bold'>(E) </span> (22,-13)