MathDB
\sum sin (k+1)x / sin kx < 2 cos x / sin^2 x

Source: 1998 Belarus TST 2.4

December 25, 2020
inequalitiestrigonometryalgebra

Problem Statement

Prove the inequality k=1nsin(k+1)xsinkx<2cosxsin2x\sum_{k=1}^{n}\frac{\sin (k+1)x}{\sin kx}< 2\frac{\cos x}{\sin^2x} where 0<nx<π/20 < nx < \pi/2, nNn \in N.