MathDB
Problems
Contests
National and Regional Contests
Belarus Contests
Belarus Team Selection Test
1998 Belarus Team Selection Test
1998 Belarus Team Selection Test
Part of
Belarus Team Selection Test
Subcontests
(4)
4
1
Hide problems
\sum sin (k+1)x / sin kx < 2 cos x / sin^2 x
Prove the inequality
∑
k
=
1
n
sin
(
k
+
1
)
x
sin
k
x
<
2
cos
x
sin
2
x
\sum_{k=1}^{n}\frac{\sin (k+1)x}{\sin kx}< 2\frac{\cos x}{\sin^2x}
k
=
1
∑
n
sin
k
x
sin
(
k
+
1
)
x
<
2
sin
2
x
cos
x
where
0
<
n
x
<
π
/
2
0 < nx < \pi/2
0
<
n
x
<
π
/2
,
n
∈
N
n \in N
n
∈
N
.
1
6
Show problems
3
6
Show problems
2
6
Show problems