MathDB
Problem from IMO Jury [hexagon inequality]

Source: IMO Shortlist 1997, Q7

March 12, 2003
geometrygeometric inequalityhexagonIMO Shortlist

Problem Statement

The lengths of the sides of a convex hexagon ABCDEF ABCDEF satisfy AB \equal{} BC, CD \equal{} DE, EF \equal{} FA. Prove that: \frac {BC}{BE} \plus{} \frac {DE}{DA} \plus{} \frac {FA}{FC} \geq \frac {3}{2}.