Problem from IMO Jury [hexagon inequality]
Source: IMO Shortlist 1997, Q7
March 12, 2003
geometrygeometric inequalityhexagonIMO Shortlist
Problem Statement
The lengths of the sides of a convex hexagon satisfy AB \equal{} BC, CD \equal{} DE, EF \equal{} FA. Prove that:
\frac {BC}{BE} \plus{} \frac {DE}{DA} \plus{} \frac {FA}{FC} \geq \frac {3}{2}.