MathDB
Problems
Contests
International Contests
IMO Shortlist
1997 IMO Shortlist
7
7
Part of
1997 IMO Shortlist
Problems
(1)
Problem from IMO Jury [hexagon inequality]
Source: IMO Shortlist 1997, Q7
3/12/2003
The lengths of the sides of a convex hexagon
A
B
C
D
E
F
ABCDEF
A
BC
D
EF
satisfy AB \equal{} BC, CD \equal{} DE, EF \equal{} FA. Prove that: \frac {BC}{BE} \plus{} \frac {DE}{DA} \plus{} \frac {FA}{FC} \geq \frac {3}{2}.
geometry
geometric inequality
hexagon
IMO Shortlist