There exists an integer n for every disk D ⊂ Q
Source:
January 25, 2011
algebra unsolvedalgebra
Problem Statement
Let be a unit square in the plane: . Let be defined as follows:
T(x, y) =\begin{cases} (2x, \frac{y}{2}) &\mbox{ if } 0 \le x \le \frac{1}{2};\$$2x - 1, \frac{y}{2}+ \frac{1}{2})&\mbox{ if } \frac{1}{2} < x \le 1.\end{cases}
Show that for every disk there exists an integer such that