MathDB
Problems
Contests
International Contests
IMO Longlists
1976 IMO Longlists
28
28
Part of
1976 IMO Longlists
Problems
(1)
There exists an integer n for every disk D ⊂ Q
Source:
1/25/2011
Let
Q
Q
Q
be a unit square in the plane:
Q
=
[
0
,
1
]
×
[
0
,
1
]
Q = [0, 1] \times [0, 1]
Q
=
[
0
,
1
]
×
[
0
,
1
]
. Let
T
:
Q
⟶
Q
T :Q \longrightarrow Q
T
:
Q
⟶
Q
be defined as follows: T(x, y) =\begin{cases} (2x, \frac{y}{2}) &\mbox{ if } 0 \le x \le \frac{1}{2};\$$2x - 1, \frac{y}{2}+ \frac{1}{2})&\mbox{ if } \frac{1}{2} < x \le 1.\end{cases} Show that for every disk
D
⊂
Q
D \subset Q
D
⊂
Q
there exists an integer
n
>
0
n > 0
n
>
0
such that
T
n
(
D
)
∩
D
≠
∅
.
T^n(D) \cap D \neq \emptyset.
T
n
(
D
)
∩
D
=
∅.
algebra unsolved
algebra