Source: Brazilian Mathematical Olympiad 2024, Level 3, Problem 6
October 12, 2024
number theoryFarey
Problem Statement
Let n>1 be a positive integer. List in increasing order all the irreducible fractions in the interval [0,1] that have a positive denominator less than or equal to n:10=q0p0<q1p1<⋯<qMpM=11.Determine, in function of n, the smallest possible value of qi−1+qi+qi+1, for 0<i<M.For example, if n=4, the enumeration is
10<41<31<21<32<43<11,
where p0=0,p1=1,p2=1,p3=1,p4=2,p5=3,p6=1,q0=1,q1=4,q2=3,q3=2,q4=3,q5=4,q6=1, and the minimum is 1+4+3=3+2+3=3+4+1=8.