MathDB

Problems(2)

minimum sum in Farey sequence

Source: Brazilian Mathematical Olympiad 2024, Level 3, Problem 6

10/12/2024
Let n>1 n > 1 be a positive integer. List in increasing order all the irreducible fractions in the interval [0,1][0, 1] that have a positive denominator less than or equal to n n :
01=p0q0<p1q1<<pMqM=11. \frac{0}{1} = \frac{p_0}{q_0} < \frac{p_1}{q_1} < \cdots < \frac{p_M}{q_M} = \frac{1}{1}.
Determine, in function of n n , the smallest possible value of qi1+qi+qi+1 q_{i-1} + q_i + q_{i+1} , for 0<i<M 0 < i < M .
For example, if n=4 n = 4 , the enumeration is 01<14<13<12<23<34<11, \frac{0}{1} < \frac{1}{4} < \frac{1}{3} < \frac{1}{2} < \frac{2}{3} < \frac{3}{4} < \frac{1}{1}, where p0=0,p1=1,p2=1,p3=1,p4=2,p5=3,p6=1,q0=1,q1=4,q2=3,q3=2,q4=3,q5=4,q6=1 p_0 = 0, p_1 = 1, p_2 = 1, p_3 = 1, p_4 = 2, p_5 = 3, p_6 = 1, q_0 = 1, q_1 = 4, q_2 = 3, q_3 = 2, q_4 = 3, q_5 = 4, q_6 = 1 , and the minimum is 1+4+3=3+2+3=3+4+1=8 1 + 4 + 3 = 3 + 2 + 3 = 3 + 4 + 1 = 8 .
number theoryFarey
hidden configuration

Source: Brazilian Mathematical Olympiad 2024, Level 2, Problem 6

10/12/2024
Let ABCABC be an isosceles triangle with AB=BCAB = BC. Let DD be a point on segment ABAB, EE be a point on segment BCBC, and PP be a point on segment DEDE such that AD=DPAD = DP and CE=PECE = PE. Let MM be the midpoint of DEDE. The line parallel to ABAB through MM intersects ACAC at XX and the line parallel to BCBC through MM intersects ACAC at YY. The lines DXDX and EYEY intersect at FF. Prove that FPFP is perpendicular to DEDE.
geometryparallelisoscelesexcirclemidpoint