MathDB
Funny Base 10

Source: AIME 2010I Problem 10

March 17, 2010
AMCAIME

Problem Statement

Let N N be the number of ways to write 2010 2010 in the form 2010 \equal{} a_3 \cdot 10^3 \plus{} a_2 \cdot 10^2 \plus{} a_1 \cdot 10 \plus{} a_0, where the ai a_i's are integers, and 0ai99 0 \le a_i \le 99. An example of such a representation is 1\cdot10^3 \plus{} 3\cdot10^2 \plus{} 67\cdot10^1 \plus{} 40\cdot10^0. Find N N.