10
Part of 2010 AIME Problems
Problems(2)
Funny Base 10
Source: AIME 2010I Problem 10
3/17/2010
Let be the number of ways to write in the form 2010 \equal{} a_3 \cdot 10^3 \plus{} a_2 \cdot 10^2 \plus{} a_1 \cdot 10 \plus{} a_0, where the 's are integers, and . An example of such a representation is 1\cdot10^3 \plus{} 3\cdot10^2 \plus{} 67\cdot10^1 \plus{} 40\cdot10^0. Find .
AMCAIME
Integer Quadratic
Source: 2010 AIME II #10
4/1/2010
Find the number of second-degree polynomials with integer coefficients and integer zeros for which f(0)\equal{}2010.
quadraticsalgebrapolynomialcountingdistinguishabilityAMCUSA(J)MO