MathDB
f(x_1,...,x_n)=\frac{1}{x_1}+\frac{1}{2x_2}+\ldots+\frac{1}{(n-1)x_{n-1}}+\frac{

Source: Moldova TST 2004

March 8, 2023
Binomial

Problem Statement

Let nNn\in\mathbb{N}, the set A={(x1,x2...,xn)xiR+,i=1,2,...,n}A=\{(x_1,x_2...,x_n)|x_i\in\mathbb{R}_{+}, i=1,2,...,n\} and the function f:AR,f(x1,...,xn)=1x1+12x2++1(n1)xn1+1nxn.f:A\rightarrow\mathbb{R}, f(x_1,...,x_n)=\frac{1}{x_1}+\frac{1}{2x_2}+\ldots+\frac{1}{(n-1)x_{n-1}}+\frac{1}{nx_n}. Prove that f((n1),(n2),...,(nn1),(nn))=f(2n1,2n2,...,2,1).f(\textstyle\binom{n}{1},\binom{n}{2},...,\binom{n}{n-1},\binom{n}{n})=f(2^{n-1},2^{n-2},...,2,1).