MathDB
Problems
Contests
National and Regional Contests
Moldova Contests
Moldova Team Selection Test
2004 Moldova Team Selection Test
5
5
Part of
2004 Moldova Team Selection Test
Problems
(1)
f(x_1,...,x_n)=\frac{1}{x_1}+\frac{1}{2x_2}+\ldots+\frac{1}{(n-1)x_{n-1}}+\frac{
Source: Moldova TST 2004
3/8/2023
Let
n
∈
N
n\in\mathbb{N}
n
∈
N
, the set
A
=
{
(
x
1
,
x
2
.
.
.
,
x
n
)
∣
x
i
∈
R
+
,
i
=
1
,
2
,
.
.
.
,
n
}
A=\{(x_1,x_2...,x_n)|x_i\in\mathbb{R}_{+}, i=1,2,...,n\}
A
=
{(
x
1
,
x
2
...
,
x
n
)
∣
x
i
∈
R
+
,
i
=
1
,
2
,
...
,
n
}
and the function
f
:
A
→
R
,
f
(
x
1
,
.
.
.
,
x
n
)
=
1
x
1
+
1
2
x
2
+
…
+
1
(
n
−
1
)
x
n
−
1
+
1
n
x
n
.
f:A\rightarrow\mathbb{R}, f(x_1,...,x_n)=\frac{1}{x_1}+\frac{1}{2x_2}+\ldots+\frac{1}{(n-1)x_{n-1}}+\frac{1}{nx_n}.
f
:
A
→
R
,
f
(
x
1
,
...
,
x
n
)
=
x
1
1
+
2
x
2
1
+
…
+
(
n
−
1
)
x
n
−
1
1
+
n
x
n
1
.
Prove that
f
(
(
n
1
)
,
(
n
2
)
,
.
.
.
,
(
n
n
−
1
)
,
(
n
n
)
)
=
f
(
2
n
−
1
,
2
n
−
2
,
.
.
.
,
2
,
1
)
.
f(\textstyle\binom{n}{1},\binom{n}{2},...,\binom{n}{n-1},\binom{n}{n})=f(2^{n-1},2^{n-2},...,2,1).
f
(
(
1
n
)
,
(
2
n
)
,
...
,
(
n
−
1
n
)
,
(
n
n
)
)
=
f
(
2
n
−
1
,
2
n
−
2
,
...
,
2
,
1
)
.
Binomial