MathDB
condition for the convergence of sum (x^i/i^b)

Source: Romania National Olympiad 2015, grade xi, p. 3

August 23, 2019
real analysisSequences

Problem Statement

Let be two nonnegative real numbers a,b a,b with b>a, b>a, and a sequence (xn)n1 \left( x_n \right)_{n\ge 1} of real numbers such that the sequence (x1+x2++xnna)n1 \left( \frac{x_1+x_2+\cdots +x_n}{n^a} \right)_{n\ge 1} is bounded.
Show that the sequence (x1+x22b+x33b++xnnb)n1 \left( x_1+\frac{x_2}{2^b} +\frac{x_3}{3^b} +\cdots +\frac{x_n}{n^b} \right)_{n\ge 1} is convergent.